The different inhibition mechanisms of OXA-1 and OXA-24 β-lactamases are determined by the stability of active site carboxylated lysine.

نویسندگان

  • Tao Che
  • Christopher R Bethel
  • Marianne Pusztai-Carey
  • Robert A Bonomo
  • Paul R Carey
چکیده

The catalytic efficiency of class D β-lactamases depends critically on an unusual carboxylated lysine as the general base residue for both the acylation and deacylation steps of the enzyme. Microbiological and biochemical studies on the class D β-lactamases OXA-1 and OXA-24 showed that the two enzymes behave differently when reacting with two 6-methylidene penems (penem 1 and penem 3): the penems are good inhibitors of OXA-1 but act more like substrates for OXA-24. UV difference and Raman spectroscopy revealed that the respective reaction mechanisms are different. The penems form an unusual intermediate, a 1,4-thiazepine derivative in OXA-1, and undergo deacylation followed by the decarboxylation of Lys-70, rendering OXA-1 inactive. This inactivation could not be reversed by the addition of 100 mM NaHCO3. In OXA-24, under mild conditions (enzyme:inhibitor = 1:4), only hydrolyzed products were detected, and the enzyme remained active. However, under harsh conditions (enzyme:inhibitor = 1:2000), OXA-24 was inhibited via decarboxylation of Lys-84; however, the enzyme could be reactivated by the addition of 100 mM NaHCO3. We conclude that OXA-24 not only decarboxylates with difficulty but also recarboxylates with ease; in contrast, OXA-1 decarboxylates easily but recarboxylates with difficulty. Structural analysis of the active site indicates that a crystallographic water molecule may play an important role in carboxylation in OXA-24 (an analogous water molecule is not found in OXA-1), supporting the suggestion that a water molecule in the active site of OXA-24 can lower the energy barrier for carboxylation significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OXA-10 and OXA-2 ESBLs among multidrug-resistant Pseudomonas aeruginosa isolates from North West of Iran

Production of Extended spectrum β-lactamases (ESBLs) is a common mechanism of resistance in multidrug- Pseudomonas aeruginosa, but the frequency of different ESBLs may vary significantly in different parts of the world. The aim of this study was to investigate the prevalence of OXA-2/OXA-10 type ESBLs and class 1 integron among clinical isolates of P. aeruginosa in Ta...

متن کامل

Lysine Carboxylation in Proteins: OXA-10 -Lactamase

An increasing number of proteins are being shown to have an N -carboxylated lysine in their structures, a posttranslational modification of proteins that proceeds without the intervention of a specific enzyme. The role of the carboxylated lysine in theseproteins is typically structural (hydrogen bonding or metal coordination). However, carboxylated lysines in the active sites of OXA-10 and OXA-...

متن کامل

Heterogeneous hydrolytic features for OXA-48-like β-lactamases.

OBJECTIVES Carbapenem-hydrolysing class D β-lactamases of the OXA-48 type are increasingly reported from Enterobacteriaceae. β-Lactamase OXA-48 hydrolyses penicillins very efficiently, but carbapenems only weakly and spares broad-spectrum cephalosporins. Recently, diverse OXA-48-like β-lactamases have been identified worldwide (OXA-162, OXA-181, OXA-163, OXA-204 and OXA-232). They differ by few...

متن کامل

Evaluation of the β-Lactamase Disk Test Method in the Detection of Extended-Spectrum-β-Lactamases in Clinical Isolates of Multidrug-Resistant Pseudomonas aeruginosa

Background & Aims: The production of extended-spectrum-β-lactamases (ESBLs) is the main mechanism of resistance to β-lactam antibiotics. The outbreak of isolates simultaneously possessing several resistance mechanisms to β-lactam antibiotics caused a decrease in sensitivity of the confirmatory tests for ESBL. The aim of this study was the evaluation of the β-lactamase disk test...

متن کامل

Structures of the class D Carbapenemases OXA-23 and OXA-146: mechanistic basis of activity against carbapenems, extended-spectrum cephalosporins, and aztreonam.

Class D β-lactamases that hydrolyze carbapenems such as imipenem and doripenem are a recognized danger to the efficacy of these "last-resort" β-lactam antibiotics. Like all known class D carbapenemases, OXA-23 cannot hydrolyze the expanded-spectrum cephalosporin ceftazidime. OXA-146 is an OXA-23 subfamily clinical variant that differs from the parent enzyme by a single alanine (A220) inserted i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 289 9  شماره 

صفحات  -

تاریخ انتشار 2014